
Democratizing knowledge representation with
BioCypher

This manuscript (permalink) was automatically generated from biocypher/biocypher-paper@f6d30ef on November 27,

2024.

Authors

Sebastian Lobentanzer ✉ 
 0000-0003-3399-6695 ·  slobentanzer ·  slobentanzer  

Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine,

Heidelberg, Germany

Patrick Aloy  
Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona,

Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain

Jan Baumbach  
Institute for Computational Systems Biology, University of Hamburg, Germany

Balazs Bohar  
Earlham Institute, Norwich, UK; Biological Research Centre, Szeged, Hungary

Vincent J. Carey  
Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, USA

Pornpimol Charoentong  
Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im

Neuenheimer Feld 267, 69120, Heidelberg, Germany; Department of Medical Oncology, National Centre for Tumour

Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany

Katharina Danhauser  
Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany

Tunca Doğan  
Biological Data Science Lab, Department of Computer Engineering, Hacettepe University, Ankara, Turkey; Department

of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey

Johann Dreo  
Computational Systems Biomedicine Lab, Department of Computational Biology, Institut Pasteur, Université Paris Cité,

Paris, France; Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France

Ian Dunham  
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus,

Hinxton, Cambridgeshire CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10

1SD, UK

Elias Farr  
Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational

Biomedicine, Bioquant, Heidelberg, Germany

https://biocypher.github.io/biocypher-paper/v/f6d30ef0b0e33c5bb2b413df5a699c62af8f8a46/
https://github.com/biocypher/biocypher-paper/tree/f6d30ef0b0e33c5bb2b413df5a699c62af8f8a46
https://orcid.org/0000-0003-3399-6695
https://github.com/slobentanzer
https://twitter.com/slobentanzer


Adrià Fernandez-Torras  
Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona,

Catalonia, Spain

Benjamin M. Gyori  
Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA

Michael Hartung  
Institute for Computational Systems Biology, University of Hamburg, Germany

Charles Tapley Hoyt  
Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA

Christoph Klein  
Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany

Tamas Korcsmaros  
Earlham Institute, Norwich, UK; Quadram Institute Bioscience, Norwich, UK

Andreas Maier  
Institute for Computational Systems Biology, University of Hamburg, Germany

Matthias Mann  
Proteomics Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen,

Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried,

Germany

David Ochoa  
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus,

Hinxton, Cambridgeshire CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10

1SD, UK

Elena Pareja-Lorente  
Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona,

Catalonia, Spain

Ferdinand Popp  
Applied Tumour Immunity Clinical Cooperation Unit, National Centre for Tumour Diseases (NCT), German Cancer

Research Centre (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany

Martin Preusse  
German Centre for Diabetes Research (DZD), Neuherberg, Germany

Niklas Probul  
Institute for Computational Systems Biology, University of Hamburg, Germany

Benno Schwikowski  
Computational Systems Biomedicine Lab, Department of Computational Biology, Institut Pasteur, Université Paris Cité,

Paris, France

Bünyamin Sen  
Biological Data Science Lab, Department of Computer Engineering, Hacettepe University, Ankara, Turkey; Department

of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey



Maximilian T. Strauss  
Proteomics Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen,

Denmark

Denes Turei  
Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational

Biomedicine, Bioquant, Heidelberg, Germany

Erva Ulusoy  
Biological Data Science Lab, Department of Computer Engineering, Hacettepe University, Ankara, Turkey; Department

of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey

Dagmar Waltemath  
Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im

Neuenheimer Feld 267, 69120, Heidelberg, Germany

Judith A. H. Wodke  
Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im

Neuenheimer Feld 267, 69120, Heidelberg, Germany

Julio Saez-Rodriguez ✉ 
 0000-0002-8552-8976 ·  saezrodriguez ·  saezlab  

Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine,

Heidelberg, Germany

✉ — Correspondence possible via GitHub Issues or email to Sebastian Lobentanzer
<sebastian.lobentanzer@gmail.com>, Julio Saez-Rodriguez <pub.saez@uni-heidelberg.de>.

https://orcid.org/0000-0002-8552-8976
https://github.com/saezrodriguez
https://twitter.com/saezlab
https://github.com/biocypher/biocypher-paper/issues


Main

Biomedical data are amassed at an ever-increasing rate, and machine learning tools that use prior
knowledge in combination with biomedical big data are gaining much traction [1,2]. Knowledge graphs
(KGs) are rapidly becoming the dominant form of knowledge representation. KGs are data structures
that represent knowledge as a graph to facilitate navigation and analysis of complex information,
often by leveraging semantic information. Their versatility has made them popular in areas such as
data storage, reasoning, and explainable arti�cial intelligence [3]. However, for many research groups,
building their own biomedical KG is prohibitively expensive. This motivated us to build the BioCypher
framework to support users in creating KGs (https://biocypher.org).

The ability to build a task-speci�c KG is important, since directly standardising the representation of
biomedical knowledge is not appropriate for the diverse research tasks in the community. While
human researchers can contextualise and abstract concepts easily, the same does not apply to
algorithms. For example, drug discovery tasks (viewing genes as functional ancestors of protein
targets) require a di�erent KG structure and content compared to the implementation of a molecular
tumour board (genes as clinical markers), which is di�erent still from research into cell type-
contextualised gene regulatory network inference (genes as targets of regulatory mechanisms). Even
for similar tasks, the KG structure or subtle decisions about included resources lead to di�erent
results for many modern analytic methods [2]. In addition, decisions about how to represent
knowledge at each primary resource pose problems in their integration, for instance via the use of
di�erent identi�er namespaces, levels of granularity, or licences [4,5].

The current landscape of biomedical KGs is not easily navigated; neither the KGs themselves, nor the
pipelines used to build them, consistently adhere to FAIR (Findable, Accessible, Interoperable, and
Reusable) [6] and TRUST (Transparency, Responsibility, User focus, Sustainability, and Technology) [7]
principles. Understandably, the overhead required to implement these principles may not be justi�ed
when building a one-o� task-speci�c KG for research. Thus, many KGs are built manually for speci�c
applications, which leads to issues in their reuse and integration [4]. For downstream users, the
resulting KGs are too distinct to easily compare or combine [5]. Maintaining KGs for the community is
additional work; once maintenance stops, they quickly deteriorate, leading to reusability and
reproducibility issues [4] (Supplementary Note 1).

BioCypher has been built with continuous consideration of the FAIR and TRUST principles, yielding
bene�ts to the entire community in multiple respects:

Modularity: To rationalise e�orts across the community, we propose a modular architecture that
maximises reuse of data and code in three ways: input, ontology, and output (Figure 1A). Input
adapters allow delegating maintenance work to one central place for each resource, ontology
adapters give access to the wealth of structured information curated by the ontology community, and
output adapters allow benchmarking and selection of database management systems. Together,
these mechanisms enable a work�ow that reduces the time and e�ort to develop and deploy custom
KGs.

Harmonisation: By using ontologies as expertly crafted repositories of conceptual hierarchies, we
facilitate harmonisation from a biological perspective. We aid with the technical aspects of using and
manipulating ontologies, for instance by �exibly extending or hybridising complementary ontologies.

Reproducibility: By sharing the mapping of KG contents to ontologies, we facilitate reproduction of
the structure of the corresponding database without access to the primary data, which may be
prohibited by licence or privacy issues. We also enable extraction of subgraphs, e�ectively converting



storage-oriented to task-speci�c KGs, which due to their reduced sizes are easier to share alongside
analyses.

Reusability and accessibility: Finally, the sustainability of research software is strongly related to
adoption in – and contributions from – the community. BioCypher is developed as a TRUSTworthy
open-source software, applying methods of continuous integration and deployment, and including a
diverse community of researchers and developers from the beginning. This facilitates work�ows that
are tested end-to-end, including the integrity of the scienti�c data. We operate under the permissive
MIT licence and provide community members with guidelines for their contributions and a code of
conduct (https://github.com/biocypher).

Di�erent measures further increase the accessibility and FAIRness of our framework. For example, we
provide a template repository for a BioCypher pipeline with adapters, including a Docker Compose
setup. To enable learning by example, we curate existing pipelines, as well as all adapters they use, in
our GitHub organisation. Using the GitHub API and a BioCypher pipeline, we build a “meta-graph” for
the simple browsing and analysis of BioCypher work�ows (https://meta.biocypher.org). To inform the
contents of this meta-graph, we have reactivated and now maintain the Biomedical Resource
Ontology (BRO [8]), which helps to categorise pipelines and adapters into research areas, data types,
and purposes (Supplementary Note 2).

Figure 1:  The BioCypher framework. A) Threefold modularity: Resources (left) and ontologies (bottom left) are
combined to yield a knowledge graph (right). The mapping of entities to ontology concepts is realised by shareable
con�guration, which can be iteratively optimised. B) Initially, we transform commonly used, curated “secondary”
resources into con�gurable, task-speci�c knowledge graphs in various output formats. Incrementally, these secondary
adapters will be replaced by primary resource adapters (see Figure S1). Coloured panels in A and B indicate parts of the
BioCypher ecosystem. C) Agreeing on a common representational framework allows harmonisation of task-speci�c data
sources to answer complex queries across biomedical domains. For instance, starting at mass spectrometry
measurements of a patient’s tumour (left), one could go through clinical annotations to genetic dependencies from the
Dependency Map project to identify potential drug targets, or through pathway / process annotations in Reactome and
IntAct, identify relevant ligand-receptor pairs using OmniPath, and use CROssBAR to perform drug discovery or
repurposing for these receptors. Panels correspond to resources; although we work on most of the displayed resources,
the �gure is used for illustrative purposes and does not depict an existing pipeline.



BioCypher is implemented as a Python library that provides a low-code access point to data
processing and ontology manipulation, emphasising the reuse of existing resources to the highest
extent possible. We have begun to open the platform to other bioinformatics ecosystems, starting
with R/Bioconductor (https://biocypher.org/r-bioc.html). By our design principles and the automation
of data management tasks, we aim to free up developer time and guide decision making on how to
represent knowledge, bridging the gap between the �eld of biomedical ontology and the broad
application of databases in research.

By abstracting the KG build process as a combination of modular input adapters, we save developer
time in the maintenance of integrative resources built from overlapping primary sources (Figure 1B),
for instance OmniPath [9], Bioteque [2], CROssBAR DB [10], and the Clinical Knowledge Graph [11]. By
mapping the contents of those resources onto a common ontological space, we gain interoperability
between the di�erent biomedical domains (Figure 1C). BioCypher helps with the mapping procedure
by providing examples and an interface, as well as numerous user-friendliness measures. By using the
industry standard Web Ontology Language (OWL) format, we provide access to the majority of
available ontologies. Separating the ontology framework from the modelled data enables the
implementation of reasoning applications at the ontology level, for instance the ad-hoc harmonisation
of disease ontologies.

By providing access to a range of modular output adapters, we facilitate the project-speci�c
benchmarking and selection of suitable database management systems. For instance, a Neo4j
adapter provides rapid access to extensive databases for maintenance of knowledge and enables
queries from analysis (Jupyter) notebooks. Switching to alternative graph or relational databases (e.g.,
ArangoDB or PostgreSQL) allows for task-speci�c performance optimisation. A CSV-writer and Python-
native adapters (e.g., Pandas, sparse matrix, or NetworkX formats) yield knowledge representations
that can directly be used programmatically by a wide range of machine learning frameworks. Due to
BioCypher’s modular nature, additional output adapters can quickly be added.

Application programming interfaces (APIs) built on top of the BioCypher KGs enable complex and
versatile queries and simplify the interaction of users with the knowledge. For example, web widgets
and apps (such as drug discovery and repositioning with https://crossbar.kansil.org and analysis
work�ows with https://drugst.one) allow researchers to browse and customise the database, and to
plug it into standard pipelines. Additionally, a structured, semantically enriched knowledge
representation facilitates connection to and improves performance of modern natural language
processing applications such as GPT [12], which can be speci�cally tuned for biomedical research [13].
The use of common standards enables sharing of tools across projects and communities or in cloud-
based services that preserve sensitive patient data (Supplementary Note 3).

There have been numerous attempts at standardising KGs and making biomedical data stores more
interoperable. We can identify three general types of approaches, in increasing order of abstraction:
centrally maintained databases, explicit standard formats (modelling languages), and KG frameworks.
With BioCypher, we aim to improve user-friendliness on all three levels of abstraction; for an in-depth
discussion, see Supplementary Note 4. Despite many e�orts, there is no widely accepted solution.
Very often, resources take the “path of least resistance” in adopting their own, arbitrary formats of
representation. To our knowledge, no framework provides easy access to state-of-the-art KGs to the
average biomedical researcher, a gap that BioCypher aims to �ll. We demonstrate some key
advantages of BioCypher by case studies in Supplementary Note 5.

We believe that creating a more interoperable biomedical research community is as much a social
e�ort as it is a scienti�c software problem. To facilitate adoption of any approach, the process must
be made as simple as possible, and it must yield tangible rewards, such as signi�cant savings in
developer time. We will provide hands-on training for all interested researchers, and we invite all
database and tool developers to join our collective e�ort.
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Supplementary Methods

BioCypher is implemented as a Python package. Its structure follows the purpose of a threefold
modularity of inputs, ontology, and outputs. A user interface class (“core”) receives user choices via
con�guration YAML �les and connects the inputs provided by resource-speci�c adapters to either bulk
disk-writing methods or driver-based connections tailor-made for database management systems. It
also manages the mapping of data inputs to ontologies with the help of an ontology module. This
modular architecture facilitates extension of all modules according to the community’s needs.

The resulting knowledge graphs (KGs) can be described as “instance-based” realisations of biomedical
concepts: using the concept de�nition from the ontology, each entity in the graph becomes an
instance of this concept. We recommend the use of a generic “high-level” ontology such as the Biolink
model [14], a comprehensive and generic biomedical ontology; where needed, this ontology can be
exchanged with or extended by more speci�c and task-directed ontologies, for instance from the OBO
Foundry [15]. The versions of all used ontologies should be speci�ed by each pipeline, which can most
e�ectively be realised by specifying a persistent URL (PURL) for the versioned ontology �le (most
commonly in OWL format) in the BioCypher con�guration. Identi�er namespaces are collected from
the community-curated and frequently updated Bioregistry service [16], which is important for
ensuring continued compatibility among the created KGs. Bioregistry also supplies convenient
methods for parsing identi�er Compact URIs (CURIEs), which are the preferred method of
unambiguously specifying identities of KG entities. For identi�er mapping, where required, the
corresponding facilities of pypath [9] are used and extended.

The preferred way of entering data into a BioCypher graph attaches scienti�c provenance to each
entry, allowing the aggregation of data with respect to their sources (for instance, the publication an
interaction was derived from) and thus avoiding problems such as duplicate counting of the same
primary data from di�erent secondary curations. For author attribution, the preferred way of entering
data into BioCypher also includes the exact provenance of each entry. In the same way, all licences of
the contents are propagated forward, enabling the users of the framework to easily determine the
allowed uses for any given KG. This behaviour can be enforced by using BioCypher’s “strict mode.” The
attachment of this information can be particularly useful in cases in which a subset of the graph does
not ful�l the user’s requirements; individual entity annotation allows the usage of only the parts of the
KG that are covered by the rights of the user. While the ultimate responsibility of correct
interpretation and execution of licensing issues lies with the end user, we strive to make the task as
accessible as possible.

BioCypher is a free software under MIT licence, openly developed and available at
https://github.com/biocypher and via PyPI. We are generally compatible with the three most recent
Python versions (which currently is 3.9 or higher). Community contributions in the form of GitHub
issues or pull requests are very welcome and encouraged. More details and a tutorial can be found in
the documentation at https://biocypher.org.

Supplementary Note 1 - Background

We here give some background and references on the problem of standardising biomedical
knowledge representation. Biomedical knowledge, although increasingly abundant, is fragmented
across hundreds of resources. For instance, a clinical researcher may use protein information from
UniProtKB [17], genetic variants from COSMIC [18], protein interactions from IntAct [19], and
information on clinical trials from ClinicalTrials.gov [20].



Finding the most suitable KG for a speci�c task is challenging and time-consuming; they are published
in isolation and there is no registry [4,5]. Few available KG solutions perfectly �t the task the individual
researcher wants to perform, but creating custom KGs is only possible for those that can a�ord years
of development time by an individual [2,21] or even entire teams [22]. Smaller or non-bioinformatics
labs need to choose from publicly available KGs, limiting customisation and the use of non-public
data. There exist frameworks to build certain kinds of KG from scratch [23,24], but these are di�cult
to use for researchers outside of the ontology sub�eld and often have a rigid underlying data model
[5,25]. Even task-speci�c knowledge graphs sometimes need to be built locally by the user due to
licensing or maintenance reasons, which requires signi�cant technical expertise [26]. Modifying an
existing, comprehensive KG for a speci�c purpose is a non-trivial and often manual process prone to
lack of reproducibility [27].

Supplementary Note 2 - Approach

We expand here on our section in the main text, detailing the four pillars of our approach.

1. Modularity: To rationalise e�orts across the community, we propose a �exible modular
architecture that maximises reuse of data and code in three ways: input, ontology, and output.
Input adapters allow delegating maintenance work to one central place for each resource, ontology
adapters give access to the wealth of structured information curated by the ontology community,
and output adapters allow benchmarking and selection of database management systems.
Together, these mechanisms shall enable an agile work�ow that drastically reduces the time and
e�ort to develop and deploy custom KGs for small teams. See the case study “Modularity” and
others for more information.

2. Harmonisation: To facilitate harmonisation of datasets from a biological perspective, we propose
to use ontology mapping (referring to a hierarchical organisation of biological concepts). Primary
data sources may represent similar data in di�erent ways. BioCypher harmonises biomedical data
by mapping divergent representations onto the same biological concept, and aids with the
technical aspects of ontology manipulation (see case study “Tumour board”). In addition, the
ontological information projected onto each KG entity allows for more �exible and informative
queries in downstream analyses (see case study “Network expansion”).

3. Reproducibility: By sharing the ontology mapping from (2) in a project-speci�c manner, a database
used for a speci�c task can be reproduced more e�ectively. Since sharing the databases
themselves is often prohibited by their large size, BioCypher facilitates the creation of task-speci�c
subsets of databases to be shared alongside analyses. Extensive automation reduces development
time and �le sizes, while additionally making the shared dataset independent of database software
versions (see case studies “Network expansion”, “Subgraph extraction”, and “Embedding”).

4. Reusability and accessibility: Our template repository for a BioCypher pipeline with adapters,
including a Docker Compose setup, is available on GitHub. To enable learning by example, we
curate existing pipelines as well as all adapters they use in a GitHub project that is tied to the
BioCypher repository. With these data, using the GitHub API and a pipeline based on our template,
we build a BioCypher “meta-graph” for the simple browsing and analysis of existing BioCypher
work�ows (https://meta.biocypher.org/). To inform the structure of this meta-graph, we have
reactivated and now maintain the Biomedical Resource Ontology (BRO [8]), which allows the
categorisation of pipelines and adapters (now on GitHub).

While data FAIRness is a necessary part of open science communication, it is not su�cient for the
adoption and sustainability of a software project such as BioCypher. As such, we also implement
measures based on the TRUST principles, to increase usability, accessibility, and extensibility of our

https://github.com/biocypher/project-template
https://github.com/orgs/biocypher/projects/3
https://bioportal.bioontology.org/ontologies/BRO/?p=summary
https://github.com/biocypher/biomedical-resource-ontology


framework. For more information, see the following Supplementary Text on “Sustainable
Development.”

Sustainable Development

We have implemented numerous measures to increase the user-friendliness of our framework. The
BioCypher ecosystem is maintained centrally at https://github.com/biocypher, which includes projects
for the management of development and the components of BioCypher pipelines (adapters and
ontologies). These projects serve as the ground truth for available BioCypher modules, and are used
by a BioCypher pipeline (https://github.com/biocypher/meta-graph) to build an overview graph
database that is automatically deployed to our server as a freely accessible Neo4j browser instance (at
https://meta.biocypher.org, no login credentials required). Prospective users can use the board and
the graph to �nd examples and reusable components for their own KG.

We provide a template repository (https://github.com/biocypher/project-template) that guides new
users through the process of deploying their own KG. It includes a docker compose  setup which
can be used to execute the KG build step and automatically transfer the KG into a Neo4j database
running in the o�cial Neo4j Docker container, thus being automatically secure to deploy.

We provide a detailed tutorial for all aspects of BioCypher on our web page, https://biocypher.org,
which we update regularly as new features are added. We provide easy access to our community on
that page, including email contact, a mailing list, and a community chat channel at
https://biocypher.zulipchat.com. We also explicitly encourage contributions and getting in contact,
and we o�er help through online or in-person seminars and meetings. We provide community
guidelines, a code of conduct, and a developer guide for contributing. We participate in and organise
hackathons to educate about knowledge representation and improve interoperability with other
software ecosystems, such as Bioconductor and Galaxy.

Supplementary Note 3 - Implementation

We build on recent technological and conceptual developments in biomedical ontologies that greatly
facilitate the harmonisation of biomedical knowledge and advocate a philosophy of reuse of open-
source software. For instance, we integrate a comprehensive “high-level” biomedical ontology, the
Biolink model [14], which can be replaced or extended by more domain-speci�c ontologies as needed,
and an extensive catalogue and resolver for biomedical identi�er resources, the Bioregistry [16]. Both
projects, like BioCypher, are open-source and community-driven. The ontologies serve as a framework
for the representation of biomedical concepts; by supporting the Web Ontology Language (OWL),
BioCypher allows integration and manipulation of most ontologies, including those generated by
Large Language Models.

Separating the ontology framework from the modelled data allows implementation of reasoning
applications at the ontology level, for instance the ad-hoc harmonisation of multiple disease
ontologies before mapping the data points. For instance, with a group of users that are
knowledgeable in ontology, a way to harmonise the divergent or incomplete ontologies can be
developed, e.g. on the topic of diseases, before using them to inform the knowledge representation
output. In addition, new developments in the �eld of language models and grounding will enable
plugging “automatic” grounding into the ontology adapter in BioCypher, helping more novice users
with the mapping between KG entities and the corresponding ontologies (see for instance
https://github.com/ccb-hms/ontology-mapper).

Building a task-speci�c KG, given existing con�guration, takes only minutes, and creating a KG from
scratch can be achieved in a few days of work. This allows for rapid prototyping and automated

https://github.com/monarch-initiative/ontogpt


machine learning (ML) pipelines that iterate the KG structure to optimise predictive performance; for
instance, building custom task-speci�c KGs for graph embeddings and ML (see case study
“Embeddings”). Despite its speed, automated testing of millions of entities and relationships per KG
increases trust in the consistency of the data (see Supplementary Methods for details and the case
study “Network expansion” for an example).

Supplementary Note 4 - Prior Art

There have been numerous attempts at standardising knowledge graphs and making biomedical data
stores more interoperable [4,5]. They can be divided into three broad classes representing increasing
levels of abstraction of the KG build process:

1. Centrally maintained databases include task-oriented data collections such as OmniPath [9] or the
CKG [11]. They are the least �exible form of knowledge representation, usually bound to a speci�c
research purpose, and are highly dependent on their primary maintainers for continuous
functioning. BioCypher reduces the development and maintenance overhead that usually goes
along with such a resource, making a task-speci�c KG feasible for smaller and less bioinformatics-
focused groups. These databases usually do not conform to any standard in their knowledge
representation, hindering their integration. In contrast, with BioCypher, we migrate OmniPath,
CKG, and other popular databases onto an interoperable KG framework.

2. Explicit standard formats or modelling languages include the Biolink model [14], BEL [28], GO-CAM
[29], SBML [30], BioPAX [31], and PSI-MI [32]. There are many more, each a solution to a very
speci�c problem, as reviewed elsewhere [28,33]; some are part of the COMBINE standard
ecosystem [34]. Their main shortcoming is the rigidity that follows from their data model
de�nitions: to represent data in one of these languages, the user needs to fully adopt it. If the task
exceeds the scope of the language, the user needs to either look for alternatives, or introduce new
features into the language, which can be a lengthy process. In addition, some features may be
incompatible, and thus, one centrally maintained language de�nition is fundamentally limited. With
BioCypher, each of the above languages can be adopted as the basis for a particular knowledge
graph; in fact, we use the Biolink model as a basic ontology. Inside our framework, these languages
can be freely and transparently exchanged, modi�ed, extended, and hybridised, as we show in
several of our case studies (e.g., “Tumour board” extends Biolink with Sequence Ontology and
Disease Ontology).

3. KG frameworks provide a means to build KGs, similar to the idea of BioCypher [23,24,25,35].
However, most tie themselves tightly to a particular standard format or modelling language
ecosystem, thereby inheriting many of the limitations described above. The Knowledge Graph Hub
provides a data loader pipeline, KGX allows conversion of KGs between di�erent technical formats,
and RTX-KG2 builds a �xed semantically standardised KG; all three adhere to the Biolink model
[25,35]. Bio2BEL is an extensive framework to transform primary databases into BEL [24].
PheKnowLator is the only tool that is conceptually similar to BioCypher in that it allows the creation
of knowledge graphs under di�erent data models [23]. However, it appears to be aimed at
knowledge representation experts, requiring considerable bioinformatics and ontology expertise.
While being fully customisable, it does not feature �exible recombination of modular components.

The strategy of subgraph extraction to yield smaller, user-speci�c KGs has been implemented
previously, for instance by CROssBAR (v1), ROBOKOP, and the BioThings Explorer [10,36,37]. However,
these rely on single (and thus enormous) harmonised KGs for extracting the subgraphs as opposed to
BioCypher’s modular approach [38]. While the “top-down” approach of �rst building a massive KG and
then extracting subgraphs from it is a valid means to arrive at a particular knowledge representation,
the e�ort involved is detrimental to e�ciency and democratisation of the process. A secondary



consequence of this large primary e�ort is that alternative representations of the initial KG will
probably not be attempted, hindering �exible knowledge representation. In contrast, the “bottom-up”
approach we follow in BioCypher emphasises modular recombination and �exible representation with
small e�ort overheads.

Ontology mapping has been leveraged for data integration by consortia such as the Monarch Initiative
(which is the parent organisation of the MONDO Disease Ontology and the Biolink model, among
others) as well as single projects, such as KaBOB [39,40]. While conceptually related to BioCypher in
the use of ontology and biomedical data, these are massive e�orts that are not amenable to
replication by the average research group. We aim to close this gap by providing an agile and modular
framework that facilitates the reuse of the valuable resources generated by those projects.

There exist alternatives to work�ows that involve KGs. While the premise of our manuscript is that
KGs are an important part of sustainable and trustworthy machine learning in the biomedical
sciences, “zero domain knowledge” approaches such as UniHPF [41] can do without prior knowledge
in their inference process. Whether methods that forego knowledge representation entirely can be as
good or better than methods that use knowledge representation is still a matter of discussion
[1,3,42,43,44,45,46]. One aspect that is apparent from modern developments in large language
models is that prior knowledge-free models appear to be very data hungry; while billion parameter
models are very impressive in their text and image processing capabilities, we do not nearly have
enough data in molecular biomedicine to train a GPT-like model, even if we had the funds to train it. In
addition, even in prior knowledge-free deep models, a semantically enriched knowledge graph can
still play a role and be useful as an in-process component [12]. To address these and other
performance-related questions, we want to facilitate the creation of benchmarks and standard
datasets through the modular nature of our framework.

Supplementary Note 5 - Case studies

In the following sections, we illustrate the usefulness of various design aspects of BioCypher in
practical examples. For most of these case studies, an actual implementation already exists, while
some are still drafts or work in progress in early stages. Practical implementations including public
code can be accessed for Modularity, Tumour board, Network expansion, Subgraph extraction,
Embedding, and Open Targets.

Modularity

There are several resources used by the biomedical community that can be considered essential to a
majority of bioinformatics tasks. A good example is the curation e�ort on proteins done by the
members of the Universal Protein Resource (UniProt) consortium [17]; many secondary resources and
tools depend on consistent and comprehensive annotations of the major actors in molecular biology.
As such, there are an enormous number of individual tools and resources that make requests to the
public interface of the UniProt service, all of which need to be individually maintained. We and several
of our close collaborators make use of this resource, for instance in OmniPath [9], CKG [11], Bioteque
[2], and the CROssBAR drug discovery and repurposing database [10]. We have created an example
on how to share a UniProt adapter between resources and how to use BioCypher to combine pre-
existing databases based on ontology.

We have written such an adapter for UniProt data, using software infrastructure provided by the
OmniPath backend PyPath (for downloading and locally caching the data). The adapter provides the
data as well as convenient access points and an overview of the available property �elds using Python
Enum classes, o�ering automatic suggestion and autocomplete functionality. Using these methods,
selecting speci�c content from the entirety of UniProt data and integrating this content with other



resources is greatly facilitated (Figure 2), since the alternative would be, in many cases, to use a
manual script to access the UniProt API and rely on manual harmonisation with other datasets.

Similarly, we have added adapters for protein-protein interactions from the popular sources IntAct
[19], BioGRID [47], and STRING [48], as well as other resources. For an up-to-date overview of the
BioCypher pipelines and adapters, please visit the Components board and the meta-graph. By using
the UniProt accession of proteins in the KG and BioCypher functionality, the sources are seamlessly
integrated into the �nal KG despite their di�erences in original data representation. As with UniProt
data, access to interaction data is facilitated by provision of Enum classes for the various �elds in the
original data. The adapters and a script demonstrating their usage are available on GitHub. The
project uses Biolink version 3.2.1.

Figure 2:  Modularity of knowledge input. Individual primary source adapters can be used to build secondary
knowledge curations such as OmniPath (compare to Figure 1A). This shifts maintenance towards the primary source and
thus reduces maintenance e�ort: instead of maintaining each primary resource at the integrated KG level, only one
reusable adapter for each resource is necessary. The primary adapters provide an additional level of �exibility to the
user by providing accessible insight into the contents of each primary resource, which can be extensive. For instance, in
the adapter for the UniProt knowledge base, the user can select their favourite species, �elds of protein information
such as the length or mass of the protein, and relationships to import, such as the host organism or the coding gene of
each protein.

Tumour board

https://github.com/orgs/biocypher/projects/3
https://meta.biocypher.org/
https://github.com/HUBioDataLab/CROssBAR-BioCypher-Migration


Cancer patients nowadays bene�t from a large range of molecular markers that can be used to
establish precise prognoses and direct treatment [26,49]. In the context of the DECIDER project
(www.deciderproject.eu), we are creating a platform to inform the tumour board of actionable
molecular phenotypes of high-grade serous ovarian cancer patients. The current manual work�ow for
discovering actionable genetic variants consists of multiple complex database queries to di�erent
established cancer genetics databases [26,50,51]. The returns from each of the individual queries then
need to be curated by human experts (geneticists) in regard to their identity (e.g. identify duplicate
hits from di�erent databases), biological relevance, level of evidence, and actionability. The
heterogeneous nature of results received from di�erent primary database providers makes this a
time-consuming task, and a bottleneck for the discovery and comprehensive evaluation of all possible
treatment options.

To facilitate the discovery of actionable variants and reduce the manual labour of human experts, we
use BioCypher to transform the individual primary resources into an integrated, task-speci�c KG.
Through mapping of the contents of each primary resource to ontological classes in the build process,
we largely remove the need to manually curate and harmonise the individual database results. This
mapping is determined once, at the beginning of the integration process, and results in a BioCypher
schema con�guration that details the types of entities in the graph (e.g., patients, di�erent types of
variants, related treatment options, etc.) and how they are mapped and thus integrated into the
underlying ontological framework. As a second step, datasets that are not yet available from pre-
existing BioCypher adapters are adapted in similar fashion to yield data ready to be ingested by
BioCypher. The code for this project can be found at https://github.com/oncodash/oncodashkb.

We make use of the ontology manipulation facilities provided by BioCypher to extend the broad but
basic Biolink ontology in certain branches where it is useful to have more granular information about
the data that enters the KG. For example, the exact type of genetic variants are of high importance in
the molecular tumour board process, but Biolink only provides a generic “sequence variant” class in
its schema. Therefore, we extended the ontology tree at this node with the very granular
corresponding subtree of the Sequence Ontology (SO, [52]), yielding a hybrid ontology with the
generality of Biolink and the accuracy of a specialised ontology of sequence variants (Figure 3).
Building on the mechanism provided by BioCypher, this hybridisation can be performed by providing
only the minimal input of the sequence ontology URL and the nodes that should be the point of
merging (“sequence variant” in Biolink and “sequence_variant” in SO). The same process is used with
the Disease Ontology [53] and OncoTree [54] (see Figure 3). We use Biolink v3.2.1 and the most recent
version of Disease Ontology (as provided by the OBO Foundry at
http://purl.obolibrary.org/obo/so.owl).

Figure 3:  Modular ontology. BioCypher combines modular inputs from biomedical resources (left) with a �exible
sca�old based on ontology (bottom) to build task-speci�c knowledge graphs (KGs) with variable format (middle). Users
can con�gure the use of individual resources as well as the contents taken from these resources in a community-



curated collection of adapters. The data are then harmonised on the basis of user-speci�ed ontologies that are tailored
to the speci�c purpose of the desired KG, using BioCypher’s mapping, extension, and hybridisation facilities. Finally, the
KG is provided to the user through an output adapter in the desired format. Since Biolink has a broad but general
representation of biomedical classes, we extend the “sequence variant” with the corresponding granular information
from the specialised Sequence Ontology (right side). Similarly, information about cancer and speci�c tumour types are
added from Disease Ontology and OncoTree.

Once the database has been created through BioCypher, the process of querying for an actionable
variant and its associated treatment options for a given patient is greatly simpli�ed. This approach
also improves the concordance of knowledge base sources, the ability to incorporate external clinical
resources, and the recovery of evidence only represented in a single resource [26].

The major advantage of using BioCypher to integrate several resources is the formal representation of
the process provided by the schema con�guration, which allows for a simple description and long-
term centralised maintenance. Other approaches [26] need ad-hoc scripts, hindering refactoring if the
input resources change, and lose metadata about the provenance of the merged information,
hindering a posteriori analysis.

Network expansion

Database schemata of large-scale biomedical knowledge providers are tuned for e�ective storage. For
analysis, the user may bene�t from a more dedicated schema type corresponding to the biological
question under investigation. We created BioCypher with the objective to simplify the transformation
from storage-optimised schemas to analysis-focused schemas. Given one or multiple data sources,
the user should be able to quickly build a task-speci�c knowledge graph using only a simple
con�guration of the desired graph contents. We demonstrate the simplifying capabilities using an
interaction-focussed graph database derived from the Open Targets platform as an example [55].

Barrio-Hernandez et al. used this graph database to inform their method of network expansion [56].
The database runs on Neo4j, containing about 9 million nodes and 43 million edges. It focuses on
interactions between biomedical agents such as proteins, DNA/RNA, and small molecules. Returning
one particular interaction from the graph requires a Cypher query of ~13 lines which returns ~15
nodes with ~25 edges (variable depending on the amount of information on each interaction). A
procedure to collect information about these interactions from the graph is provided with the original
manuscript [56], containing Cypher query code of almost 400 lines. Still, this extensive query only
covers 11 of the 37 source labels, 10 of the 43 target labels, and 24 of the 76 relationship labels that
are used in the graph database, o�ering a large margin for optimisation in creating a task-speci�c KG.

After BioCypher adaptation, the KG (covering all information used by Barrio-Hernandez et al.) has
been reduced to ~700k nodes and 2.6 million edges, a more than ten-fold reduction, without loss of
information with regard to this speci�c task. This lossless reduction is possible due to 1) the semantic
abstraction and 2) the removal of information in the original graph that is not relevant to the task.
Compared to the original �le of the database dump (zipped, 1.1 GB), the BioCypher output is ~20-fold
smaller (zipped, 63 MB), which greatly facilitates sharing and accessibility (e.g. by simplifying online
access via Jupyter notebooks). The Cypher query for an interaction has been reduced from 13 query
lines, 15 nodes, and 25 edges to 2 query lines, 3 nodes, and 2 edges (Figure 4). This change comes
with a reduction in complexity, which may be bene�cial for the experience of interacting with the KG.
If the Cypher query is programmatically generated, this does not play a role for the user. However, in
that case, the complexity is shifted upstream to the code that generates the query.

http://ftp.ebi.ac.uk/pub/databases/intact/various/ot_graphdb/current/apoc_procedures_ot_data.txt


Figure 4:  Semantic abstraction. A) The original, “storage-oriented” format used by the OTAR KG, displaying one
interaction with additional data. B) The Cypher query to receive one interaction from the OTAR graph. C) The migrated,
“task-oriented” format produced by the BioCypher adapter, displaying one interaction. The “additional data” from (A)
about experiment and evidence type can be added to the interaction node as a property or encoded in additional nodes
connected to the interaction node. D) The Cypher query to receive one interaction from the migrated graph.

Most of this reduction is due to removal of information that is not relevant to the task at hand and
semantic abstraction; for instance, the original chain of (“hgnc”)-[:database]-(“SNAI1”)-
[:preferredIdentifier]-(:Interactor)-[:interactorB]-(:Interaction)-
[:interactorA]-(:Interactor)-[:preferredIdentifier]-(“EP300”)-[:database]-
(“hgnc”)  to qualify one protein-protein-interaction can be reduced to (“EP300”)-[:enzyme]-
(“phosphorylation”)-[:enzyme target]-(“SNAI1”) . Arguably, the shorter BioCypher query is
also more informative, since it details the type of interaction as well as the roles of the participants. In
addition, this representation returns sources of information about the proteins and the interaction as
properties on the nodes, and the hierarchical ontology-derived labels provide rich information about
the biological context. For instance, the �rst ancestor labels of the “phosphorylation” node are
“enzymatic interaction”, “direct interaction”, and “physical association”, grounding this speci�c
interaction in its biological context and enabling �exible queries for broader or more speci�c terms.
This additional information was introduced into the data model by combining the Biolink ontology
with the molecular interaction ontology by the Proteomics Standards Initiative [32]. Thus, this “task-
oriented” representation is complementary to the “storage-oriented” one, serving a di�erent purpose,
and BioCypher provides an easy and reliable way of going from one type of representation to the
other.

The BioCypher migration is fast (about 15 minutes on a common laptop) and tested end-to-end,
including deduplication of entities and relationships as well as verbose information on violations of
the desired structure (e.g., due to inconsistencies in the input data), making the user explicitly aware
of any fault points. Through this feedback, several inconsistencies were found in the original Open
Targets graph during the migration, some of which originated from misannotation in the SIGNOR
primary resource (e.g., “P0C6X7_PRO_0000037309” and “P17861_P17861-2”). This problem a�ected
only a few proteins, which could have gone unnoticed in a manual curation of the data; a type of
problem that likely is common in current collections of biomedical knowledge.

Knowledge representations can and should be tuned according to the speci�c needs of the
downstream task to be performed; BioCypher is designed to accommodate arbitrarily simple or
complex representations while retaining information important to biomedical research tasks. A
compressed structure is important, for instance, in graph machine learning and embedding tasks,



where each additional relationship exponentially increases computational e�ort for message passing
and embedding techniques [2,57]. Most importantly, evidence (which experiment and publication the
knowledge is derived from) and provenance (who provided which aspects of the primary data) should
always be propagated. The former is essential to enable accurate con�dence measures, e.g., not
double-counting the same information because it was derived from two secondary sources which
refer to the same original publication. The latter is important for attribution of work that the primary
maintainers of large collections of biomedical knowledge provide to the community. The code of this
migration can be found at https://github.com/biocypher/open-targets. The project uses Biolink v3.2.1.

Subgraph extraction

For many practical tasks in the work�ow of a research scientist, the full KG is not required. For this
reason, building complex and extensive KGs such as the CKG [11] or the Bioteque [2] would not be
sensible in all use cases.

For instance, in the context of a proteomics analysis, the user would only like to contextualise their list
of di�erentially abundant proteins using literature connections in the CKG, rendering much of the
information on genetics and clinical parameters unnecessary. In addition, the KG may contain
sensitive data on previous projects or patient samples, which cannot be shared (e.g. in the case of
publishing the analysis), causing reproducibility issues. Likewise, some datasets cannot be shared due
to their licences. With BioCypher, a subset of the entire knowledge collection can be quickly and easily
created, taking care to not include sensitive, irrelevant, or unlicensed data. The analyst merely needs
to select the relevant species (e.g. proteins, diseases, and articles) and their relationships in the
BioCypher con�guration. BioCypher then queries the original KG and extracts the required
knowledge, conserving all provenance information, and yielding a much-reduced data set ready for
sharing.

The original CKG is shared as a Neo4j database dump with a compressed size of 5-7 GB (depending on
the version), including 15M nodes and 188M edges. After BioCypher migration of the full CKG, the
same KG can be created from BioCypher output �les that have a compressed size of 1.3 GB. Of note,
the creation from BioCypher �les using the admin import command is Neo4j version-independent,
which is not the case for dump �les and can be a reproducibility issue for earlier versions; for
instance, the graph of Barrio-Hernandez et al. in the “Network expansion” case study is a Neo4j v3
dump, which is no longer supported by the current Neo4j Desktop application. Finally, after the
subsetting procedure, the reduced KG (including 5M nodes and 50M edges) in BioCypher format has a
compressed size of 333 MB.

Since a complete CKG adapter already existed, the subsetting required minimal e�ort; i.e., the only
required step was to remove unwanted contents from the complete schema con�guration. The code
for this task can be found in the same repository. This project uses Biolink v3.2.1.

Embedding

As a second subsetting example, we demonstrate the usefulness of subsetting KGs for task-speci�c
graph embeddings. KG embeddings can be an e�cient lower-dimensional substitute for the original
data in many machine learning tasks 12 and, as methods such as GEARS [58] show, these embeddings
can be useful for very complex, hard tasks. However, including all prior data in every embedding is not
necessary for good results, while using the proper domain of knowledge can vastly increase the
performance of downstream tasks [2]. This issue extends both to the type of knowledge represented
(not every kind of relationship is relevant to any given task) as well as the source of the knowledge
(di�erent focus points in knowledge resources lead to di�erential performance across di�erent tasks).

https://github.com/biocypher/clinical-knowledge-graph
https://github.com/biocypher/clinical-knowledge-graph/blob/main/scripts/subset_ckg_script.py


Thus, it is highly desirable to have a means to identify the proper knowledge domain relevant to a
speci�c task to increase the e�ciency of subsequent analyses.

To achieve this aim, BioCypher can facilitate task-speci�c builds of well-de�ned sets of knowledge
from a combination of primary sources for each application scenario. And, since the BioCypher
framework automates much of the build process going from only a simple con�guration �le, the
knowledge representations can be iterated over quickly to identify the most pertinent ones. As above,
the only requirement from the user (given existing BioCypher adapters for all requested primary
sources) is a selection of biological entities and their relationships in the schema con�guration.

We have performed this method of subsetting embedding in the Bioteque environment [2] with a
subset of the Clinical Knowledge Graph [11]. Concretely, we emulated a scenario where a user seeks
to computationally describe the patient samples available in the CKG to explore context-speci�c
similarity between patients. In brief, we �rst selected a few sequences of relationships (i.e. the
metapath) to connect subjects (patients) to the proteins expressed by their individual samples, (i.e.
subject → biological sample → analytical sample → protein). Given the rich variety of associations
available for protein entities, we can further link these subjects to other entities and relations
available in the knowledge graph, enabling the exploration of speci�c contexts. For instance, we
extended the metapath to connect the subjects’ protein readouts to biological pathways. Importantly,
due to the gigantic size of the CKG, it was fundamental to use a CKG BioCypher adapter to extract the
pertinent subgraphs containing only the required knowledge (e.g., patient-protein data and
pathways). Indeed, selecting the desired KG entities from the complete adapter required negligible
time (demonstrated at https://github.com/biocypher/clinical-knowledge-graph). Finally, the protein-
and pathway-based patient descriptors were obtained by running the Bioteque embedding pipeline
(https://gitlabsbnb.irbbarcelona.org/bioteque/). The two resulting patient embedding spaces and their
corresponding cluster similarity are provided in Figure 5.



Figure 5:  Bioteque-based patient embeddings. Two embedding spaces were obtained to describe patients (‘Subjects’
nodes in the CKG) based on protein (left) and protein-pathway (right) similarities. a, d: 2D projection (t-SNE) of the
subjects according to the protein similarity (a) and pathway similarity (d). Subject nodes are coloured by disease type
(see legend at the bottom) while proteins (a) and pathways (d) are coloured in grey. b, e: Assessment of the quality of
the embeddings by quantifying their ability to reassemble the original network. For each edge in the original network,
we compute the cosine distance between its constituent nodes using the node embeddings. We then generate 100
random permutations for each edge in the network, preserving the degree of each node, and calculate the cosine
distances between them. Finally, for each permutation we sorted all the distances and computed the ROC and PR curves
using the original network edges and the corresponding random permutation as the positive and negative sets,
respectively. c, f: Heatmap showing the cosine similarity of the subject embeddings. To make similarities comparable
between heatmaps, cosine similarities were transformed into z-scores by subtracting the median and dividing by the
IQR of their corresponding background distribution. Thus, the higher/redder the z-score the higher the similarity. An
agglomerative hierarchical clustering based on the protein-driven similarities (c) was used to sort the rows and columns
in both heatmaps (c, f). Rows (columns) are coloured based on the subject’s disease (see legend at the bottom). Notice
how, while both spaces are unsurprisingly similar (i.e., both are based on protein readouts), the pathway-driven
similarities reveal sub-clusters within disease types that were not evident based on purely protein-driven similarities.

Note that, thanks to the modular nature of the Bioteque pipeline, it is possible to generate
embeddings from any network (even beyond the ones used in the Bioteque KG) by just extracting the
connections forming the metapath. In this regard, BioCypher o�ers a handy means to query the
pertinent input �les for the Bioteque pipeline, paving the way for an e�cient exploration,
identi�cation, and extraction of task-speci�c KG contexts (e.g., generation of KG embeddings for
patient similarity exploration). Indeed, a similar exercise can be performed on the Open Targets



dataset (see next section), with minimal preparatory e�ort. This would allow, for instance, to further
connect protein readouts to disease associations or to complement patient descriptors with
embeddings of diseases, drugs, and drug targets for downstream predictive pipelines.

Open Targets

The Open Targets platform is an open resource for drug discovery provided by the European
Bioinformatics and Sanger Institutes [55]. Their core dataset on drug target-disease relationships is
provided for download in columnar format; it is internally harmonised but only partially mapped to
several disjoint ontologies (mainly disease-related). The dataset can be downloaded in Parquet
format, a data structure designed to work on distributed systems in a highly parallel manner, making
e�cient BioCypher adaptation very simple.

To enable an open, community-maintained KG version of the columnar Open Targets dataset, we
created a BioCypher adapter using Biolink v3.2.1 (https://github.com/biocypher/open-targets). Due to
the e�cient data processing using Parquet and PySpark, the adapter can be run on small machines
such as current laptops as well as in distributed high-performance computing environments. It
provides a �exible basis for individually customised KGs from Open Targets data and allows frequent
rebuilding of the KGs when the dataset is updated. The simple layout of a BioCypher adapter allows
rapid implementation (less than 500 lines of code) and response to breaking changes in the source
material (such as structural or name changes). Additionally, since the adapter can be reused, changes
need to be implemented only once for the bene�t of all downstream users.

As shown in the case study “Modularity”, user access of the data is facilitated by Enum classes
detailing the dataset contents, allowing automatic suggestions and autocomplete, including all
individual source datasets. Licences of all original data are propagated, and the use of BioCypher
“strict mode” guarantees the inclusion of licence, source, and version �elds on every single entity of
the KG, greatly simplifying downstream decisions related to licensing.

Mapping the Open Targets dataset to a central ontology also facilitates integration with further
datasets such as UniProt and the Cancer Dependency Map. Since Open Targets is a gene-centric
platform, data from UniProt can yield complementary insights on the protein layer, for instance by
coupling to other datasets of signalling cascades. We included information on human proteins by
simply adding the protein node type and the gene-to-protein edge from the UniProt adapter
described in section Modularity. Harmonising the data was then a simple matter of loading the
additional adapter, making sure that the identi�er namespace used for genes (ENSEMBL gene) was
the same in both adapters (via Enum-based con�guration), and writing the information to disk via
BioCypher. It only required the addition of 8 lines of code in the build script. Adding gene essentiality
and cell line information from the Dependency Map project adapter was performed similarly by
adding the adapter and loading nodes and edges in the correct format.

Federated learning

Federated learning is a machine learning approach that enables multiple parties to collaboratively
train a shared model while keeping their data decentralised and private [59,60]. This is achieved by
allowing each party to train a local version of the model on their own data, and then sharing the
updated model parameters with a central server that aggregates these updates. However, most
machine learning algorithms depend on a uni�ed structure of the input; when it comes to algorithms
that combine prior knowledge with patient data, a large amount of harmonisation needs to occur
before the algorithms can be applied.



BioCypher facilitates federated machine learning by providing an unambiguous blueprint for the
process of mapping input data to ontology. Once a schema for a speci�c machine learning task has
been decided on by the organisers, the BioCypher schema con�guration can be distributed, ensuring
the same database layout in all training instances. The usefulness becomes apparent in two pilot
projects outlined below.

Firstly, the Care-for-Rare project of the Munich Children’s Hospital has to synchronise a broad
spectrum of biomedical data: demographics, medical history, medical diagnosis, laboratory results
from routine diagnostics, imaging and omics data with analyses of proteome, metabolome and
transcriptome in di�erent tissues as well as genetic information. To allow reaching a sample size that
is suitable for modern methods of diagnosis and treatment options in rare diseases 38, world-wide
collaboration between children’s hospitals is a necessity. The unstructured nature of most clinical data
necessitates a harmonisation step with subtle challenges with respect to ontology. For instance,
general classi�cations such as ICD10-GM subsume rare childrens’ diseases under umbrella terms for
whole disease groups, requiring alternative coding catalogues such as Orphanet OrphaCodes [61] and
the German Alpha-ID [62]. Larger ontologies such as HPO [63] and SNOMED-CT [64] are complex and
expanded constantly. In addition to the technical challenges, the legal requirements of patient
con�dentiality and data protection necessitate extreme care in the processing of all data, hindering
information sharing between collaborators. All of the above poses great challenges in data integration
in the clinical setting.

Secondly, the MeDaX project (bioMedical Data eXploration at University Medicine Greifswald)
develops innovative and e�cient methods for storage, enrichment, comparison, and retrieval of
biomedical data based on KG technology. Embedded in the Medical Informatics Initiative (MII)
Germany, MeDaX builds on the federated storage structure for biomedical health care and research
data established in all Data Integration Centres (DICs) at German university hospitals. We envision
extending the existing MIRACOLIX toolbox [65] with the MeDaX pipeline to set up local KGs, combining
complex heterogeneous data from multiple resources: in addition to biomedical data available only at
the DICs due to patient privacy, we include the MII core data set [66], local population studies [67,68],
biomedical ontologies [69], and public information portals [70]. BioCypher’s ontology mapping
process facilitates future integration of additional data sources (see also the case study “Data
integration”).

We enable federated learning pipelines by supplying build instructions for each local database in the
form of the schema con�guration that can be publicly and centrally maintained, since it contains no
sensitive data (Figure 6). At each training location, a task-speci�c KG is created from public data (e.g.,
with the Clinical Knowledge Graph as baseline), using the subsetting facilities described in the case
study “Subgraph extraction”. Afterwards, the sensitive patient data (e.g., germ-line genetic variants)
are integrated into this KG at each location, using the BioCypher schema con�guration to specify the
type of data involved (e.g., clinical measurements, genetic pro�ling). This ensures that, regardless of
how the sensitive data are represented at each location, the machine learning algorithm works with
the exact same structure of KG, preventing accidental or malicious data leakage in the federated
learning step.



Figure 6:  User interface. BioCypher provides high-level users with an abstracted pipeline interface that is used to
aggregate data from primary adapters while collecting and unifying the individual data inputs. Con�guration needs to
take place only globally when combining adapters that provide overlapping identi�er systems, which can be assessed
through the pipeline interface. This is useful to synchronise proprietary or sensitive data between single locations in a
federated learning pipeline, since the adapters that contain non-public data only need to provide non-sensitive,
summary level information about the data they supply.

Data integration

Biomedical data collections are growing to enormous sizes, which makes the handling of data alone a
non-trivial task. Additionally, these large corpuses then need to be put to good use in downstream
analyses, including collaborations between groups or even institutions. The growth of arbitrarily
organised large-scale collections of knowledge poses major challenges to the maintainers of these
databases:

Maintaining data ingestion pipelines for dozens of upstream data sources is not feasible in a
research context and detracts development time from other tasks.

Using a custom (non-standardised) data model, the e�ort to integrate new upstream data sources
grows with the total number of pre-existing data sources. Each new data source has to be cross-
referenced with all existing data sources and inconsistencies arise because the same piece of
information may be represented with di�erent levels of abstraction.

The custom data model also complicates collaboration with external researchers. Integrating data
from di�erent contexts requires the collaborators to adapt to the internal data model.



BioCypher can handle all three challenges. Firstly, the open architecture and community e�ort around
BioCypher allows maintaining core data ingestion pipelines while reusing data adapters from experts
in other �elds. Secondly, the well-described data model by virtue of the ontologies used to build the
KG drastically reduces the e�ort required to integrate new data sources because they need only to be
adapted to the core data model, not to all existing data. Thirdly, the combination of an open
architecture and ontology-based data integration facilitates collaborations with external researchers.
We maintain two pilot projects for continuous large-scale data integration in a research context,
detailed below.

1. The German Centre for Diabetes Research (DZD, www.dzd-ev.de) has developed a knowledge
graph to support data integration for translational research. The internal KG instance provided the
foundation of the open-source CovidGraph project [71] which is now maintained by the
HealthECCO community (www.healthecco.org). At the core of the DZD KG is a data ingestion
pipeline for PubMed that transforms publication data into a detailed graph representation,
including authors, a�liations, references, and MeSH term annotations. The PubMed graph
contains 350 million nodes and 850 million relationships, as well as data on biological entities
(genes, transcripts, proteins), their functional annotations, and biochemical interactions. This KG is
used to link internal research data to public knowledge and to generate new research hypotheses.

Re-building the data ingestion and maintenance based on BioCypher reduces the time required to
bring new data products to researchers at the DZD because the uni�ed data model and ontology-
backed data harmonisation allow the reuse of data analysis modules and user interface components.
Removing obstacles for collaboration on the knowledge graph supports interdisciplinary research on
diabetes complications and comorbidities.

2. At the National Centre for Tumour Diseases (NCT) and the German Cancer Research Centre (DKFZ),
we aim to integrate a biomedical knowledge graph with patient data from clinical studies, including
multi-omics data, to aid in the strati�cation of novel biomarkers and the implementation of
precision medicine. To achieve this, we are using the BioCypher framework to create a biomedical
KG from curated primary data sources. The KG will be expanded over time through experimental
results as well as clinical annotation and will provide an interface for di�erent roles in the cancer
research process. The maintenance and integration of the biomedical knowledge graph with
patient data o�ers new opportunities for analysis that may enhance the accuracy and e�ectiveness
of precision medicine approaches.

Upscaling

As biomedical data become larger, integrated analysis pipelines become more expansive and, thus,
expensive. For numerous projects in systems biomedicine to succeed, a �exible way of maintaining
and analysing large sets of knowledge is necessary. This is done most e�ectively by separating data
storage and analysis (such that each component can be individually scaled), while using distributed
computing infrastructure to perform both tasks in close vicinity, such as computing clusters. We have
recently published an open-source software, called Sherlock, to perform this type of data
management for biomedical projects [72]. However, this pipeline in some ways depends on manual
maintenance, for instance in its data transformation from primary resource to internal format.

Using BioCypher, we facilitate the maintenance of Sherlock’s input sources by reusing existing
adapters and converting the manual scripts to additional adapters for unrepresented resources.
Combined with the unambiguous BioCypher schema con�guration, this will make Sherlock’s input
side automatable and greatly decrease maintenance e�ort, unlocking its full potential in managing
complex bioinformatics projects and their resources. Given a con�guration that can be developed
locally, a project database can be upscaled to arbitrary numbers of nodes on an in-house or
commercial cluster just as the project requires, saving compute time and thereby money. By virtue of

https://github.com/earlham-sherlock/earlham-sherlock.github.io/tree/master/loaders


the Sherlock-BioCypher integration, these projects retain the bene�ts from both frameworks;
BioCypher provides reusability, transparency, and ontological grounding, while Sherlock makes data
storage and analysis vastly more e�cient and economical.

Contextualization

Cells communicate with each other by exchanging molecules to organise cell development, tissue
homeostasis, or immune reactions [73]. Recent computational inference strategies have shown that
these interactions can be inferred from single-cell transcriptomics data. Since then, multiple
computational tools have been developed to address this task [74]. However, most of these tools
focus on the inference of cell-cell communication (CCC) mediated by proteins, except one recent tool
that uses metabolites [75].

A primary limitation of metabolite-mediated CCC inference from single-cell transcriptomics data is the
necessity to estimate metabolite abundance from transcript levels. To infer metabolite abundances,
current methods employ either �ux-balance analysis or enrichment-like approaches [75,76,77]. The
latter require substantial prior knowledge, usually a set of producing and degrading metabolic
enzymes for each metabolite, making information about metabolite-receptor interactions essential for
deducing CCC.

Existing prior knowledge resources cover each only a small fraction of metabolites produced by most
cells (up to 116 [75]). Further, they lack information of chemical or biological properties that would
allow the analysis to focus on speci�c diseases or tissues. Thus, a comprehensive resource that
enables contextualization to speci�c biological questions provides a strategy to increase the accuracy
of inference approaches, which are known to be highly prone to false positives [78].

We have integrated the available knowledge about metabolite-receptor interactions that is dispersed
across numerous databases. Metabolic reactions and their corresponding enzymes can be found in
databases such as KEGG [79], REACTOME [80], RHEA [81], HMDB [82], and genome-scale metabolic
models such as Recon3D [83] and Human HMR [84]. Meanwhile, information about metabolites and
their receptors is available in the STITCH database [85], Guide to Pharmacology [86], and
Interactomics screens [87]. All these databases use di�erent identi�ers for their metabolite, proteins
or reactions, that are often con�icting or redundant [88,89]. Using BioCypher, we systematically and
reproducibly integrate the knowledge from these databases, facilitating the creation and maintenance
of a comprehensive metabolite-receptor interaction database
(https://github.com/biocypher/metalinks).

The e�ectiveness of this approach is exempli�ed by examining metabolite-mediated CCC in the
kidney. By employing a few concise lines of Cypher, metabolites and proteins can be �ltered to focus
on those active in the kidney or present in urine. Likewise, metabolite-receptor interactions are
�ltered using con�dence levels. Applying these contextualization parameters reduces the overall size
of the dataset by decreasing the number of metabolites from approximately 1400 to a more
manageable 394 (derived from enzyme sets), and metabolite-receptor interactions from ~ 100 000 to
3864, featuring 807 unique receptors and 261 unique metabolites. The resulting table can either be
used in Python directly via BioCypher’s support of Pandas data frames, or exported to CSV from
Neo4j, and seamlessly integrated into downstream analysis tools performing CCC, such as LIANA [78].

https://github.com/biocypher/metalinks/blob/main/cypher_query.txt


Supplementary tables

Table 1:  Supplementary table 1. Recent biomedical knowledge graph solutions (non-comprehensive).

Database Reference

Biological Insight Knowledge Graph [22]

Bioteque [2]

Clinical Knowledge Graph [11]

CROssBAR [10]

Dependency Map [90]

GenomicKB [91]

HealthECCO Covidgraph [71]

INDRA CogEx [https://github.com/bgyori/indra_cogex]

KG-COVID-19 [25]

NIH Funding knowledge graph [92]

OmniPath [9]

Open Targets [55]

PheKnowLator [23]

PORI (Platform for Oncogenic Reporting and
Interpretation)

[26]

PrimeKG [42]

RTX-KG2 [35]

TypeDB [https://github.com/typedb-osi/typedb-bio]
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